Life Cycle Assessment of Electricity in Portugal

Workshop on Life Cycle Assessment and GIS Tools for Energy planning (TW3-TW4)

Flávio Martins
fmartins@ualg.pt

António Mortal
amortal@ualg.pt

Marisa Madeira
mimadeira@ualg.pt

Siena
25th-29th September 2017
This presentation is based on the following paper:

Life-cycle assessment of electricity in Portugal
Rita Garcia, Pedro Marques, Fausto Freire

ADAI-LAETA, Department of Mechanical Engineering, University of Coimbra, Polo II Campus, R. Luís Reis Santos, 3030-788 Coimbra, Portugal

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/apenergy

CrossMark
Materials and Methods of LCA

• Functional unit: 1 kWh
• Boundary: Portuguese electricity generation included transmission and distribution:
 – Comprise extraction;
 – Processing and transport fuels;
 – Operation of power plants;
 – Construction and decommissioning of power plants;
 – Waste management
Impact categories

- nREn – cumulative non-renewable fossil energy demand;
- GW – global warming;
- AD – abiotic depletion;
- AC – acidification;
- ET – eutrophication;
- PO – photochemical oxidation;
- OD – ozone layer depletion.
Environmental Life cycle Impacts per kWh Generated by Technology

Technologies	CED	CML					
-------------------------------	------	------					
	nREN (Mj\textsubscript{prim} fossil)	AD (g Sb eq)	GW (g CO\textsubscript{2} eq)	AC (g SO\textsubscript{2} eq)	PO (mg C\textsubscript{2}H\textsubscript{4} eq)	EUT (g PO\textsubscript{4}3- eq)	OD (μg CFC-11 eq)
Non-renewables							
Coal w/ out DeSOx & DeNOx	11.04	7.55	988	8.72	291	2.48	6.52
Coal w/ DeSOx & DeNOxa	11.48	7.81	1021	2.84	75	2.42	8.05
Fuel oil	13.16	5.86	912	19.00	748	0.57	113.04
Natural gas CC	7.38	3.61	423	0.35	31	0.06	51.81
Natural gas CHP gas engine	9.40	4.59	588	0.74	61	0.15	65.92
Natural gas CHPCC	6.47	3.16	370	0.29	27	0.04	45.39
Renewables							
Hydro reservoirb	0.04	0.02	17	0.02	1	0.06	0.00
Hydro run-of-riverb	0.04	0.02	4	0.02	1	0.01	0.00
Hydro small-hydrob	0.05	0.03	5	0.03	1	0.01	0.00
Wind	0.04	0.17	23	0.11	8	0.06	1.24
Biomass CHP	0.37	0.19	33	0.65	17	0.23	2.81
Biomass	0.60	0.29	56	1.40	31	0.44	4.55
Biogas	1.31	0.65	239	0.72	68	0.13	9.73
Photovoltaic	0.65	0.36	51	0.25	15	0.16	9.60
Waste incineration	1.71	0.83	147	1.28	44	1.19	14.85

a DeSOx: Desulfurization, DeNOx: Denitrification

b Hydro reservoirs and hydro run-of-river can be located offshore or onshore.
Life cycle impacts of the electricity generation mix: non renewable fossil (nREn) and global warming (GW)
Life cycle impacts of the electricity generation mix: abiotic depletion (AD) and acidification (AC)
Life cycle impacts of the electricity generation mix: eutrophication (EUT) photochemical reduction (PO)
Life cycle impacts of the electricity generation mix: ozone depletion (OD)

Ozone depletion (μg CFC-11 eq/kWh)
Life cycle impacts of the electricity generation mix: resume

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>nREn (MJ prim fossa)</td>
<td>6.67</td>
<td>7.46</td>
<td>8.47</td>
<td>6.72</td>
<td>6.30</td>
<td>6.44</td>
<td>6.09</td>
<td>4.35</td>
<td>5.08</td>
<td>5.72</td>
</tr>
<tr>
<td>AD (g Sb eq)</td>
<td>4.04</td>
<td>4.47</td>
<td>4.91</td>
<td>4.01</td>
<td>3.72</td>
<td>3.73</td>
<td>3.59</td>
<td>2.46</td>
<td>2.98</td>
<td>3.53</td>
</tr>
<tr>
<td>GW (g CO₂ eq)</td>
<td>533</td>
<td>585</td>
<td>646</td>
<td>523</td>
<td>480</td>
<td>477</td>
<td>459</td>
<td>312</td>
<td>380</td>
<td>456</td>
</tr>
<tr>
<td>AC (g SO₂ eq)</td>
<td>4.76</td>
<td>4.67</td>
<td>5.74</td>
<td>3.91</td>
<td>3.43</td>
<td>1.37</td>
<td>1.17</td>
<td>0.69</td>
<td>0.88</td>
<td>1.22</td>
</tr>
<tr>
<td>PO (g C₂H₄ eq)</td>
<td>0.17</td>
<td>0.17</td>
<td>0.21</td>
<td>0.14</td>
<td>0.13</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>EUT (g PO₄²⁻ eq)</td>
<td>1.01</td>
<td>1.04</td>
<td>1.06</td>
<td>0.92</td>
<td>0.80</td>
<td>0.72</td>
<td>0.74</td>
<td>0.43</td>
<td>0.60</td>
<td>0.86</td>
</tr>
<tr>
<td>OD (µg CFC-11 eq)</td>
<td>22</td>
<td>26</td>
<td>36</td>
<td>24</td>
<td>24</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>21</td>
<td>18</td>
</tr>
</tbody>
</table>
Conclusions

• An overall reduction in the environmental impacts was achieved between 2003 and 2012.
• The higher reductions were realized in acidification (AC) (-299%) and photochemical oxidation (PO) (-326%), due to:
 – Decommissioning of large fuel oil power plants (2008);
 – Installation of denitrification and desulfurization systems in coal power plant
• The impacts are strongly influenced by the share production of the renewables and these are influenced by meteorological factors like hydro variability.
THANK YOU

Flávio Martins
fmartins@ualg.pt

António Mortal
amortal@ualg.pt

Marisa Madeira
mimadeira@ualg.pt
Electricity generated by technology (E_j), total electricity generation (E_{gen}) and supply (E_{sup}) (GWh) [30,41].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-renewables</td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>13,641</td>
<td>13,952</td>
<td>14,291</td>
<td>14,070</td>
<td>11,663</td>
<td>10,423</td>
<td>11,942</td>
<td>6553</td>
<td>9128</td>
<td>12,361</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>6.6%</td>
<td>5.1%</td>
<td>11.8%</td>
<td>3.4%</td>
<td>3.0%</td>
<td>1.9%</td>
<td>0.7%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Natural gas</td>
<td>51.5%</td>
<td>25.1%</td>
<td>27.9%</td>
<td>22.7%</td>
<td>24.6%</td>
<td>30.6%</td>
<td>25.4%</td>
<td>21.6%</td>
<td>20.4%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Non-renewable CHP<sup>a</sup></td>
<td>1550</td>
<td>2052</td>
<td>2540</td>
<td>2806</td>
<td>3252</td>
<td>3011</td>
<td>3590</td>
<td>4480</td>
<td>4767</td>
<td>4406</td>
</tr>
<tr>
<td>Renewables</td>
<td></td>
</tr>
<tr>
<td>Hydropower</td>
<td>15,709</td>
<td>9911</td>
<td>4916</td>
<td>11,196</td>
<td>10,220</td>
<td>7095</td>
<td>8710</td>
<td>16,243</td>
<td>11,820</td>
<td>6423</td>
</tr>
<tr>
<td>Wind</td>
<td>2.5%</td>
<td>2.0%</td>
<td>4.2%</td>
<td>6.6%</td>
<td>9.4%</td>
<td>13.8%</td>
<td>16.6%</td>
<td>18.2%</td>
<td>19.3%</td>
<td>24.4%</td>
</tr>
<tr>
<td>Biomass CHP</td>
<td>0.3%</td>
<td>1.2%</td>
<td>3.2%</td>
<td>3.4%</td>
<td>3.7%</td>
<td>3.7%</td>
<td>3.4%</td>
<td>3.5%</td>
<td>3.8%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Biomass</td>
<td>43</td>
<td>54</td>
<td>60</td>
<td>71</td>
<td>149</td>
<td>146</td>
<td>305</td>
<td>612</td>
<td>688</td>
<td>676</td>
</tr>
<tr>
<td>Waste incineration<sup>b</sup></td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.7%</td>
<td>1.2%</td>
<td>1.5%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Biogas</td>
<td>0</td>
<td>9</td>
<td>25</td>
<td>24</td>
<td>47</td>
<td>59</td>
<td>71</td>
<td>92</td>
<td>149</td>
<td>182</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>140</td>
<td>167</td>
<td>187</td>
<td>227</td>
</tr>
<tr>
<td>Pumping<sup>c</sup></td>
<td>-485</td>
<td>-408</td>
<td>-568</td>
<td>-703</td>
<td>-541</td>
<td>-639</td>
<td>-929</td>
<td>-512</td>
<td>-587</td>
<td>-1379</td>
</tr>
<tr>
<td>Total generation (E_{gen})</td>
<td>40,261</td>
<td>39,025</td>
<td>41,125</td>
<td>43,733</td>
<td>42,581</td>
<td>41,153</td>
<td>45,075</td>
<td>49,602</td>
<td>47,152</td>
<td>40,971</td>
</tr>
<tr>
<td>Imports (E_{imp})</td>
<td>4433</td>
<td>7460</td>
<td>7528</td>
<td>7649</td>
<td>9088</td>
<td>9478</td>
<td>5616</td>
<td>4350</td>
<td>4446</td>
<td>8297</td>
</tr>
<tr>
<td>Exports (E_{exp})</td>
<td>1633</td>
<td>976</td>
<td>702</td>
<td>2267</td>
<td>1591</td>
<td>40</td>
<td>827</td>
<td>1718</td>
<td>1635</td>
<td>403</td>
</tr>
<tr>
<td>T losses ($E_{loss \ T}$)</td>
<td>738</td>
<td>677</td>
<td>648</td>
<td>562</td>
<td>577</td>
<td>585</td>
<td>523</td>
<td>961</td>
<td>788</td>
<td>770</td>
</tr>
<tr>
<td>D losses ($E_{loss \ D}$)</td>
<td>3258</td>
<td>3451</td>
<td>3439</td>
<td>3168</td>
<td>2591</td>
<td>3633</td>
<td>3277</td>
<td>3778</td>
<td>3464</td>
<td>3904</td>
</tr>
<tr>
<td>Total supply (E_{sup})</td>
<td>39,059</td>
<td>41,377</td>
<td>43,858</td>
<td>45,444</td>
<td>46,901</td>
<td>46,366</td>
<td>46,052</td>
<td>47,486</td>
<td>45,713</td>
<td>44,190</td>
</tr>
</tbody>
</table>